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The analytical expression for effective core area of single mode graded index fiber is prescribed and formulated using 
power series expression of the fundamental mode developed by Chebyshev  technique. The step and parabolic index fibers 
are used as typical examples. Using the said formulation, we estimate the effective core areas for different values of 
normalized frequency V. We also evaluate the indices of refraction for the said fibers. The concerned evaluations require 
little computation. We also show the accuracy of our simple formalism by comparing our results with the available exact 
results. Thus the formalism will prove beneficial to the technologists in the field of optical technology. 
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1. Introduction 
 
The knowledge of effective core area [1-6] of the 

optical fiber is useful to predict the effects due to third 
order optical non-linearity such as self-phase modulation 
(SPM), cross phase  modulation (XPM), soliton formation, 
four wave mixing (FWM), stimulated Raman and 
Brillouin scattering [7] etc. The fundamental study of 
optical communication system in simpler method is 
always a potential problem, where the estimation of 
effective core area and effective index of single mode 
graded index fiber has a great importance.   

Further, the design of high power fiber laser requires 
minimization of non-linear effects so that output power is 
not reduced owing to the non-linear effects [8-10]. The 
effective core area can be increased by modifying the core 
radius and refractive index profile by suitable design, so 
that the operation can be restricted in the single-mode 
region. It deserves mentioning in this connection that 
increase of effective area reduces distortion due to non-
linearity. So the prediction of effective area of single-
mode graded index fiber has a great importance in all 
optical systems involving optical fiber, where accurate 
knowledge of fundamental mode of graded index fiber is a 
must.  

In case of step index fiber, the analytical solutions for 
fundamental mode is readily available, but one has to 
resort to either numerical technique [11] or approximate 
method like the perturbation [12] or variational method 
[13-17] for derivation of fundamental mode in other kinds 
of fiber. Further, the variational method is found to be the 
most suitable one out of all the approximate methods since 
this method leads to prescription of closed form expression 

of modal field which gives analytical expressions for 
different propagation parameters. The variational 
technique involving two parameter Gaussian trial function 
for fundamental mode of graded index fiber is of great 
importance to predict the propagation characteristics over 
a long range [16, 17]. But, it is observed that in the low V 
region, the accuracy of this double parameter variational 
technique is not sufficient. At the same time, the 
variational technique involving Gaussian-exponential-
Hankel function [18] is capable to provide accurate 
prediction of graded index fiber characteristics over the 
complete single-mode region including the low V region 
as well. However, these investigations require extensive 
computation. So, the formulation of a simple but accurate 
expression of the fundamental mode of graded index fiber 
is of great importance. A simple as well as accurate power 
series expression of fundamental mode of graded index 
fiber is available in literature [19-22] where little 
computation is sufficient for execution. The Appendix part 
is included in the paper to explain the computational 
resources. Presently, computational resources are very 
much simulator based and in this respect our study and 
proposal of simpler but accurate method of determination 
of basic parameters seem to be very user friendly with  the 
system engineers.  

The effective refractive index (neff) is also an 
important parameter which is dependent not only on the 
wavelength of the signal but also on the concerned 
propagating mode. That is why it is also known as modal 
index. Practically, it denotes the overall delay of light 
beam in a particular mode in which it propagates. The 
correct value of effective index of refraction is important 
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for system modeling, optical device assembling, and 
selection of index matching gel to minimize joint losses 
and back reflection as well.   

The effective index of refraction has its proven 
importance in case of Fiber Bragg grating Sensors [23]. 
Some basic properties of Photonic crystal fibers can be 
explored with the knowledge of effective index of 
refraction [24-25]. In order to predict the effective index of 
refraction of graded index fiber, the knowledge of accurate 
values of cladding decay parameter is required. 

In this paper, the simple power series form of 
fundamental mode of graded index fiber is used to 
determine the analytic expression for effective fiber core 
area for single-mode graded index fiber. On the basis of 
said formulation, we have also reported the concerned 
evaluation and present the excellent match between our 
predictions and the available exact results. Moreover, 
based on the values of cladding decay parameter [26-28], 
we have estimated the effective index of refraction 
accurately in a simple fashion.          

 
 
2. Analysis 
 
The expression of refractive index profile of a weakly 

guiding optical fiber is 
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where ‘a’ i s  the core    radius with n1 and n2 
representing the    refractive indices of the core axis and 
cladding respectively. Further, the shape of the refractive 
index profile of the fiber is defined by f (R) and in case of 
graded index fiber, it is given as 

      f(R)= Rq           (2)  
 
where q stands for the profile exponent and its values  
for step and parabolic index fibers are ∞ and 2  
respectively. 
In case of graded index fiber, the normalized power series 
expression for fundamental mode is expressed as [19-22]. 
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Here, A2, A4 and A6 are constants while W is the 
cladding decay parameter and they are found as described 
in [20]. 

The effective core area Aeff is given as [29] 

                       

(4) 

Employing Eq. (3) in Eq. (4), one can easily find the 
effective core area  
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Following [30-32], one can evaluate Eq. (5) and thus 

Aeff is found as 
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The terms A2, A4, A6 in the expressions after Eq. (6) 
can be understood from the significance of the terms 
presented  in the Appendix 

The effective Index of refraction of an optical fiber is 
defined as, 
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Here, k0 is the propagation constant in free space and 

defined as k0= 2π/λ 

Further,   U, V and W are the waveguide parameter, 

normalized frequency and cladding decay parameter 

respectively and those are related by the following 

expression [1] 

  U2= V2 –W2                            (8)  
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3. Results and discussions 
 
Using the formulations of effective area of graded 

index fiber, we have studied the variation of effective area 
Aeff as well as effective index of refraction neff with respect 
to some typical V numbers. In this context, we choose step 
and parabolic index fibers as examples. Our investigation 
for step index fiber has been presented in Table 1 while 
that for parabolic index fiber has been presented in           
Table 2.  
 

Table 1. Effective area (Aeff) and Effective index of  
refraction (neff) for Step Index fiber 

 
V  
Number 

Aeff  (m
2) neff 

Our 
Result 

Exact Our 
Result 

Exact 

 1.4 1.40542E-10 1.40612E-10 1.44881 1.44884 
1.6 9.53936E-11 9.54101E-11 1.44998 1.45012 
 1.8 7.42103E-11 7.42283E-11 1.45105 1.45113 

2 6.21755E-11 6.22341E-11 1.45199 1.45241 
2.2 5.47460E-11 5.46952E-11 1.45283 1.45312 
2.4 4.91552E-11 4.91792E-11 1.45355 1.45362 

  

Table 2. Effective area (Aeff) and Effective index of  
refraction (neff) for Parabolic Index fiber 

 
V  
Number 

Aeff  (m
2) neff 

Our 
Result 

Exact Our 
Result 

Exact 

2.1 7.27861E-11 7.27903E-11 1.44863 1.44872 
2.5 4.72747E-11 4.73184E-11 1.44984 1.44991 
2.8 3.81412E-11 3.81371E-11 1.45066 1.45075 

3 3.43074E-11 3.43212E-11 1.45114 1.45127 
3.2 3.11392E-11 3.11431E-11 1.45159 1.45174 
3.5 2.74670E-11 2.75124E-11 1.45219 1.45225 

 

 

Fig. 1.  Variation of Effective area Aeff with normalized 
frequency  ‘V’  for  step  index  fiber [____  exact result:  

■ results from our  formulation] 
 

 

Fig. 2. Variation of Effective area Aeff with normalized 
frequency ‘V’ for parabolic index fiber [____  exact result: 

■ results from our  formulation] 
 
 

Side by side, we have presented the variation of Aeff 
versus the said V values for the Step index fiber (q=∞) in 
Fig. 1.  Here, values are represented by square dots while 
the exact values are represented by solid lines. It is seen 
that our values match excellently with the exact ones [18]. 
Similarly in Fig. 2, we represent the variation of effective 
area Aeff with normalized frequency ‘V’ for the parabolic 
index fiber (q=2). Here also, the square dots which 
represent our results match excellently with the solid lines, 
which correspond to exact values [18], Further, Figs. 3 and 
4 are representing the variations of effective index with 
normalized frequency ‘V’ for step and parabolic index 
fibers respectively. As in other Figs. 1and 2, we also 
obtain excellent agreement between our values (square 
dots) and available exact values [18] (solid lines). 

 
 

 
 

Fig. 3. Variation of Effective index of refraction neff with 
normalized    frequency    ‘V’    for    step    index    fiber 

[____  exact result: ■ results from our  formulation] 
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Fig. 4. Variation of Effective index of refraction neff with 
normalized   frequency   ‘V’   for  parabolic   index  fiber. 

[____   exact result: ■ results from our  formulation] 
 

Here, we have considered n1=1.46, numerical aperture 
=0.2 and a= 3.65×10-6 m. We have studied our results with 
variation of ‘V’ number taking numerical aperture and 
radius of the core as constants. So, the variation of ‘V’ is 
dependent on wavelength ‘λ’ only. It is also observed that 
the effective area is decreasing with increase of V number 
and this leads to the concept that fibers of large V number 
will promote more non-linear distortion. So, the results can 
guide one to choose appropriate V number so as to reduce 
four –wave mixing, self-phase modulation, stimulated 
Brillouin scattering and stimulated Raman scattering  
resulting from third order nonlinearity.  Third order 
nonlinearity will be predominant around the first higher 
order cut off ‘V’ number as the effective area is less there. 
This is applicable for both types of the fiber. This has also 
been reported in ref. [33]. The relevant mathematical 
expression for fundamental modal field in case of graded 
index fiber has been found by iterative method based on 
Chebyshev formalism [33]. Once the values of A2, A4, A6 
and W are found in presence of Kerr-nonlinearity, the 
effective area and index of refraction in this context are 
found easily by using Eqs. 4 and 7 respectively.  It has 
been found that in both kinds of fibers, the effective index 
of refraction increases with increase of V number and 
consequently higher V number implies less group velocity 
for the fundamental mode and as such more delay for it. 
Taking care of the fact that each spectral line has some 
width, however small it may be, and the medium of 
propagation is dispersive, we have considered here the 
group velocity in place of phase velocity. This is 
consistent with the results available in literature [34]. 
Finally, it can be mentioned that the excellent match 
between the available exact results [18] and the results 
estimated by our simple formalism establishes the 
accuracy of our method. Accordingly, it is expected that 
the prescribed user friendly method will be beneficial to 
the system engineers in the process of prediction of 

bending loss, laser performance, capture cross section, 
back scattering, fiber mechanical reliability etc. 

 
 
4. Conclusion  
 
We have formulated analytical expressions for 

effective core area for single-mode graded index fiber. Our 
formalism is based on accurate power series expression for 
fundamental mode of graded index fiber. We have 
estimated the said parameter in case of some typical graded 
index fibers, namely step and parabolic index fibers. Side 
by side, we have estimated index of refraction for the said 
fibers by using values of corresponding cladding decay 
parameter available in literature. The results found match 
excellently with the available exact results. The execution 
of our formalism involves little computation. Accordingly, 
the method prescribed is user friendly and it will, thus, 
benefit the engineers working in the field of technology 
concerned with various kinds of optical devices and sensors 
as well as WDM communication system.  
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Appendix  
 
For weakly guiding single-mode fiber, the 

fundamental modal field ( )R in the fiber-core is 

expressed by the following scalar wave equation [1, 20]. 
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Where 

2 2 1 / 2
0 1 2[ ( ) ]V k a n n  and 2 2 2 1/ 2

2 0[ ( ) ]W a n k   

are the normalized frequency and cladding decay 
parameter respectively with k0  and β representing the  free 
space wave number and propagation constant respectively. 

The fundamental modal field in the cladding of the 
fiber is given by, 
 

0( ) ~ ( ), 1      R K W R R       (a3) 

 
Taking care of the fact that the fundamental modal 

field ( )R   is an even function of  R with '(0 )   being 

zero and ( 0 ) non-zero,  the Chebyshev power series  of 

( )R   can be expressed as [35, 36] 
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For the sake of simplicity and accuracy, it is sufficient 
to retain terms up to j = 3 in [19-22] whereby one gets 
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The Chebyshev points are given as follows [36] 
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It is seen from Eq. (a4) that j=3 corresponds to M=4 

and thereby the corresponding Chebyshev points are found 
from Eq. (a6) and those are given below, 

 
R1 = 0.9749, R2 = 0.7818 and   R3 = 0.4338 

                                                            
Using Eq. (a5) in Eq. (a1), one gets the following 

three equations corresponding to the values of R1, R2 and 
R3 given above. 
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By applying least square fitting in the region 
0.60 2.5W  , one can formulate the following linear 
relationship 
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 It deserves mentioning in this connection that over 

said range, the above linear relationship corresponds to 
 1.0364623;   0.3890323.  

Using Eq. (a8) and Eq. (a5) in Eq. (a2), we get 
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Three equations given by Eq. (a7) and one equation 

given by Eq. (a9) will produce nontrivial solution for a2, 
a4, a6   if 
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here, i = 1, 2, 3              and 
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Using Eq. (a10), one can find W for a given value of 

V. Again, knowing  W for a particular V, one can calculate 
a2, a4 , a6  in terms of a0  by employing any three of  four 
equations given by Eq. (a7) and Eq. (a9). Thus the 
normalized field for fundamental mode for each value of 
V is found by this simple formalism and those are as 
follows    
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where, 

2 2 0/ ;j jA a a  j = 1, 2, 3  with  the value of W  

being found by the present method. 
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